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Abstract—In Quantum Local Area Networks (QLANs) – the
near-term building block of the Quantum Internet – the choice of
the physical network topology is not so restrictive and binding as
in classical LAN in terms of communication capabilities among
the network nodes. And the rationale for this is the entanglement-
enabled connectivity induced by multipartite entangled states.
Indeed, it is possible to create on-demand links between the
QLAN nodes by properly manipulating the shared multipartite
entangled states. Thus, it is possible to build an overlay entangled
network upon the physical one, characterized by a topology
different from the physical one and referred to as artificial
topology. In this paper we address the fundamental issue of
engineering the artificial topology to bypass the limitations
induced by the physical network topology. This possibility to
overcome the constraints in the network design induced by the
physical topology has no counterpart in classical networks. To
this aim, we exploit the properties of a class of multipartite
entangled states, referred to as graph states, which exhibit unique
properties, making them very interesting and promising for
engineering artificial topologies in QLANs.

Index Terms—Local Area Network(LAN), Quantum LAN,
Multipartite Entanglement, Graph states, Network Topology.

I. INTRODUCTION

In its final stage, the Quantum Internet is envisioned as a

global interconnection of heterogeneous quantum networks,

able to transmit quantum bits (qubits) and to distribute entan-

gled quantum states with no classical equivalent [1]–[5].

In a shorter-term time-horizon, given the current

technology-readiness level, interconnecting different quantum

processors with a Quantum Local Area Network (QLAN)

– namely, with a quantum network able to cover a limited

geographic area – represents one of the very first steps for

unlocking the vision of the Quantum Internet. And, indeed,

first deployments of quantum server farms are already in

place [6], [7].

For an effective QLAN design, it is crucial to account for

the new and richer form of connectivity enabled by entangle-

ment [3], [8], which has no-counterpart in classical networks.

Specifically, once an entangled state - say an EPR pair for the

sake of exemplification – has been shared between two nodes,

a qubit can be “transmitted” via quantum teleportation [9],
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[10], regardless of the instantaneous conditions of the physical

quantum link connecting the two nodes. Remarkably, qubit

transmission is still possible even when there is no longer

a quantum link connecting the nodes together. In this sense,

entanglement enables a new form of connectivity, referred to

as entanglement-enabled connectivity. Furthermore, entangle-

ment can be swapped and, hence, it is possible to change the

identities of the entangled nodes at run-time, by redefining

the very same concept of topological neighborhood with no

counterpart in the classical world. Accordingly, entanglement

enables half-duplex unicast links between any pairs of nodes,

regardless of their relative positions within the underlying
physical network topology. Hence, any pair of nodes can be

neighbor as long as they share entanglement.

Additionally, entanglement is not limited to EPR pairs. With

multipartite entanglement [11], [12], the dynamic nature of the

entanglement-based connectivity becomes even more evident

and richer. For instance, by distributing an n-qubit GHZ state

[11] among n network nodes, an EPR pair can be distributively

extracted by any pair of nodes, with the identities of the

entangled nodes chosen at run-time.

From the above, it is evident that the choice of the physical

topology of a QLAN is not so restrictive as in classical LANs

in terms of communication capabilities among the network

nodes. Indeed, as exemplified in the above examples, the node

communication capabilities go beyond the physical topology

due to the marvels of the entanglement-based connectivity.

Consequently, it is possible to create artificial links1 be-

tween the QLAN nodes on-demand, by properly manipulating

the shared multipartite entangled states. These artificial links

constitute a sort of “overlay entangled network” built upon

the physical one, and characterized by a topology – referred

to as artificial topology – that can differs significantly from

the physical one.

In this paper, we shed light on the possibility of engineering

the artificial QLAN topology to overcome the limitations and

the communication constraints induced by the physical QLAN

topology. This possibility has no counterpart in classical

networks.

1It may be useful to clarify that an artificial link between two network nodes
denotes the “possibility” of extracting a shared EPR between the two nodes,
starting from a multipartite entangled state shared among a larger set of nodes.
However, the number of EPR pairs that can be simultaneously extracted from
a single multipartite entangled state heavily depends on the type and structure
of the considered state [13], and some of the artificial links are depleted during
the extraction process.
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To this aim, we exploit the properties of a class of mul-

tipartite entangled states, referred to as graph states [14],

that recently gained significant attention from the community

[15]–[19] due to their unique entanglement properties [13],

[14]. Indeed such properties make graph states ideal resources

for various applications in quantum computing and quantum

communications.

We focus on a specific2 class of graph states, namely, two-
colorable graph states, since they exhibit regular structures

and we engineer this regularity by exploiting different degrees

of freedom, including the number of communication qubits

[20] available in the QLAN. Our findings show that – by

exploiting local operations only at the central node of a star
physical topology – it is possible to engineer the artificial

topology among the QLAN nodes for overcoming the physical

topological constraints.

The remaining part of the manuscript is organized as

follows. In Sec. II, we introduce some preliminaries related to

classical LAN and graph states. In Sec. III, we first describe

the system model, and then we develop the theoretical analysis

by providing the tools for engineering the artificial topology

beyond the limitations induced by the physical one. Finally,

in Sec. IV, we conclude the paper.

II. PRELIMINARIES

In this section, we first introduce in Sec. II-A basic concepts

related to classical LANs and their topologies, providing so

essential concepts and vocabulary used in the following. Then,

in Sec. II-B, we briefly overview some notions related to graph

theory, which will be used in Sec. II-C to present and describe

a key class of multipartite entangled states – namely, the graph
states – and the main tools for their manipulation. Specifically,

we describe how the edges of the graph associated to a graph
state can be modified by exploiting local operations only.

A. Local Area Networks

Classical Local Area Networks (LANs) are communication

networks designed to cover limited geographic areas. Histori-

cally, they served as a mean to share resources, such as files,

printers and lately internet connections, among networked

nodes.

Traditionally, the choice of the physical LAN topology

interconnecting the nodes has been crucial, since the (sub-

sequent) design of the LAN communication protocols – and,

hence, the overall LAN performances – strictly depends on

such a choice3. As a matter of fact, the choice of the

physical topology anticipates the actual LAN deployment,

and it remains fixed regardless of any changes or evolution

of the LAN communication needs. Hence, the structure and

functionality of LANs have undergone several evolutions over

the years, seeking to improve the adaptability and scalability

2It is worthwhile to note that our assumption of relying on two-colorable
states is not restrictive, since any graph state can be converted in a two-
colorable one under very relaxed conditions as discussed in Sec III.

3With a representative example given by the radical differences in the
Medium Access Control (MAC) protocol design when it comes to bus vs
ring topologies.

of the network. Among the reference LAN topologies, we

can mention three archetypes: bus, ring, and star, briefly

overviewed in the following.

1) Bus topology. In a bus topology, a single medium

(e.g., a coaxial cable) is shared among all the LAN

nodes. Although cost-effective and easy to install, the

bus topology introduces a point-of-failure vulnerability:

whenever the bus fails, the entire LAN experiences

service disruption. The bus topology was adopted within

the original IEEE 802.3 standards, defining the physical
and data-link layers for wired Ethernet [21].

2) Ring topology. Another noteworthy LAN physical

topology is the ring topology, where each node com-

municates with exactly two neighboring nodes. Data

travels along the ring, passing from one device to the

next one until reaching its destination [22], [23]. Despite

offering significant advantages over bus (such as simple

routing algorithms), a ring topology cannot tolerate the

failure of neither the bus nor any single node, and it

pose significant deployment challenges when it comes

to network expansion.

3) Star topology. Widely adopted in late-Ethernet and

WiFi networks [24], it enforces each LAN node to

be connected to a central hub (aka as hub/switch in

Ethernet and access point in WiFi terminologies). All

data traffic is directed through the hub, which can serve

as a central control point for the entire LAN. While

introducing the possibility of centralized management

and scalability – simplifying so network administration

and troubleshooting as well as network expansion – star

topologies also suffer from the problem of a single point

of failure, yet limited to the hub.

It is clear from the above that not only the LAN deployment,

but also the design of any LAN protocol must take into account

– since the very initial stages – the pros and cons offered by

the actual choice of the underlying physical topology.

Conversely, as we will show in Sec. III, the choice of

the physical topology of a QLAN is not so restrictive as in

classical LAN in terms of communication capabilities among

the network nodes, since it is possible to create artificial on-

demand links between the QLAN nodes.

B. Graph theory fundamentals

Before introducing graph states and their properties in

Sec. II-C, it is convenient to overview some basic definitions

and notations from classical graph theory. Formally, a graph4

G is defined as:

G
�
= (V,E), (1)

4In the following, we will restrict our attention on finite graphs, i.e., graphs
with finite set of vertices and edges. Furthermore, we will consider undirected,
simple graphs only, since these two properties are required for the mapping
between graphs and graph states [13], [14].
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with V denoting the set of vertices – also called nodes – with

cardinality |V | = n, and E denoting the set of edges that

describes the connections between the vertices:

E ⊂ V × V
�
= [V ]2

�
= {{a, b} : a, b ∈ V ∧ a �= b} . (2)

A graph can be pictorially represented by a diagram in a plane,

where each vertex is denoted by a point and each edge is

denoted by an arch between two nodes.

Given two vertices a, b ∈ V , if a and b are connected

through an edge {a, b} ∈ E, then they are defined as adjacent
vertices. The set of vertices adjacent to a given vertex a is

called neighborhood of a, and it is defined as:

Na = {b ∈ V |{a, b} ∈ E}. (3)

In particular, a vertex a such that |Na| = 0 is called isolated
vertex. Stemming from the concept of neighborhood, it is

possible to introduce the notion of subgraph induced by a
neighborhood. Specifically, the subgraph of G induced by Na

is the graph having: i) as vertices, the ones in Na, and ii)

as edges, the edges in E whose endpoints are both in Na.

Formally:

G[Na] = (Na, ENa
), (4)

with ENa

�
= {{b, c} ∈ E : b ∈ Na ∧ c ∈ Na} = E ∩ [Na]

2.

An important operation on graphs for the purpose of this

paper is graph complementation, which is defined as follows.

The complement (or inverse) of a graph G is the graph τ(G),
obtained by considering the same set of vertices V but with

the edge set built such that two distinct vertices of τ(G) are

adjacent if and only if they are not adjacent in G. Formally:

τ(G) = (V,EC) (5)

with EC �
= [V ]2 \ E = {{a, b} ∈ [V ]2 : {a, b} �∈ E}. The

complementation can be done also with respect to the subgraph

G[Na] of G induced by Na. In this case, it is usually referred

as local complementation of G at vertex a, and it is denoted as

τa(G). More into details, τa(G) is obtained by complementing

the subgraph of G induced by the neighborhood Na while

leaving the rest of the graph unchanged:

τa(G) = (V,E ∪ [Na]
2 \ ENa) (6)

Vertex deletion is another graph operation used in the

following. Specifically, deleting vertex a in graph G generates

a new graph G − a where both vertex a and all the edges

connecting a with its adjacent vertexes are removed. Formally:

G− a =
(
V \ {a}, E \ Ea

)
(7)

with Ea
�
=

{{a, b} ∈ E : b ∈ Na

}
, denoting the set of edges

between a and its adjacent vertexes.

C. Graph states

A notable (from a communication perspective) class of

multipartite entangled states is represented by the so-called

graph states [13], [14], which – as suggested by the name

– can be effectively described with the graph theory tools

introduced in Sec.II-B.

Specifically, stemming from an arbitrary graph G defined in

(1), the corresponding graph state |G〉 is obtained by mapping

each vertex of the graph G with a qubit in the state |+〉, and

then performing a controlled-Z (CZ) gate between each pair

of qubits corresponding to adjacent vertices in G.

Remark. The rationale underlying such a mapping lies in the
correspondence between graph edges and interaction patterns
among the qubits belonging to the composite – entangled –
system. In the mapping, vertices play the role of physical
systems and edges represent their interactions.

Formally, the graph state |G〉 associated to G
�
= (V,E) can

be expressed5 as [13]:

|G〉 =
∏

{a,b}∈E

CZab |+〉⊗n
(8)

with |+〉 = 1√
2
(|0〉 + |1〉), n = |V | and CZab denoting the

Controlled-Z (CZ) gate applied to the qubits associated to the

vertices a and b.

The above mapping between graph states and graphs is

crucial beyond a merely pictorial purpose. Specifically, the

action of key operations on a graph state |G〉 can be described

via simple transformations on the associated graph G. Among

these transformations, single-qubit Pauli measurements play a

crucial role for the objectives of this paper.

More into details, a projective measurement through a Pauli

operator σx, σy, or σz on a qubit of the graph state |G〉
yields, up to local unitaries Ui,±, a new graph state |G̃〉
on the unmeasured qubits. Interestingly, as proved in [13],

[14], this new graph state |G̃〉 can be obtained by means

of simple transformations on the graph G associated to the

original graph state |G〉, such as vertex deletion and the local

complementation introduced in (6) and (7), respectively.

Since these projective measurements will be exploited in

Sec. III for engineering the artificial topology enabled by

entanglement, it is convenient to summarize in the following

their effects on an arbitrary graph state |G〉.
i) Projective measurement via Pauli operator σz:

The measurement of a qubit – associated to vertex a in

graph G – of the initial graph state |G〉 yields, up to local

unitaries, to a new graph state |G̃z〉6 among the remaining

5With a (widely adopted) notation abuse, since the application of the CZab
gate on the state |+〉⊗n requires a reference to n − 2 identity operations I
acting on all the qubits different from a or b.

6With a mild notation abuse, the dependence on a is neglected for the sake
of notation simplicity. Similar notation abuses will be adopted also for the
following projective measurements.
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a b c d e

(a) Representation of the graph G associated to a 5-qubits linear
graph state |G〉.

a b c d e

(b) Representation of the graph G̃z = G− c obtained by performing
a σz-measurement on the qubit associated to vertex c.

a b c d e

(c) Representation of the graph G̃y = τc(G)− c obtained by
performing a σy-measurement on the qubit associated to vertex
c.

a b c d e

(d) Representation of the graph G̃x = τd(τc(τd(G)− c)) obtained by
performing a σx-measurement on the qubit associated to vertex c.

Fig. 1: Pictorial representation of the effects of different single-qubit Pauli-measurements on a graph state. The effects are

shown by representing the graph associated with the graph state obtained after the measurements (up to local unitaries).

qubits, whose associate graph G̃z is obtained by deleting

the vertex a from graph G. Formally:

G̃z
�
= G− a, (9)

P
(a)
z,± |G〉 = |z,±〉(a) ⊗ U

(a)
z,± |G− a〉︸ ︷︷ ︸

�
=|G̃z〉

, (10)

with P
(a)
z,± denoting the projector of qubit a onto the

eigenvector |z,±〉(a) of σ
(a)
z with eigenvalues ±1, and

U
(a)
z,± denoting the correcting unitary, whose expression

depends on the measurement outcome7:

U
(a)
z,+ = I, U

(a)
z,− =

⊗
b∈Na

σ(b)
z . (11)

ii) Projective measurement via Pauli operator σy:
The measurement of a qubit – associated to vertex a in

graph G – of the initial graph state |G〉 yields, up to local

unitaries, to a new graph state |G̃y〉 among the remaining

qubits, whose associate graph G̃y is obtained: i) first, by

local complementation of the graph G at vertex a, and

ii) then, by deleting a from graph G. Formally:

G̃y
�
= τa(G)− a, (12)

P
(a)
y,± |G〉 = |y,±〉(a) ⊗ U

(a)
y,± |τa(G)− a〉︸ ︷︷ ︸

�
=|G̃y〉

, (13)

with P
(a)
y,± denoting the projector of qubit a onto the

eigenvector |y,±〉(a) of σ
(a)
y with eigenvalues ±1, and

U
(a)
y,± denoting the correcting unitary, whose expression

depends on the measurement outcome:

Uy,+ =
⊗
b∈Na

√
−iσ(b)

z , Uy,− =
⊗
b∈Na

√
iσ

(b)
z . (14)

iii) Projective measurement via Pauli operator σx:
The measurement of the arbitrary qubit – associated to

7With a (widely adopted in literature) notation abuse, since the expression

of U
(a)
z,− would require a reference to n − |Na| − 1 identity operations I

acting on all the qubits not belonging to the neighbourhood of a. Similar
notation abuses will be adopted also later in the paper.

vertex a in graph G – of the initial graph state |G〉 yields,

up to local unitaries, to a new graph state |G̃x〉 among the

remaining qubits, whose associate graph G̃x is obtained

by concatenating the following three graph operations:

i) local complementation of the graph G at an arbitrary

neighbor vertex b0 ∈ Na, ii) then, local complementation

of the graph G at vertex a, followed by the deletion of a
from graph G, and iii) finally, a local complementation

at b0 of the graph obtained at the previous step. Formally:

G̃x = τb0
(
τa(τb0(G))− a

)
, (15)

P
(a)
x,± |G〉 = |x,±〉(a) ⊗ U

(a)
x,± |τb0 (τa (τb0(G))− a)〉︸ ︷︷ ︸

�
=|G̃x〉

,

(16)

with P
(a)
x,± denoting the projector of qubit a onto the

eigenvector |x,±〉(a) of σ
(a)
x with eigenvalues ±1, and

U
(a)
x,± denoting the correcting unitary, whose expression

depends on the measurement outcome:

Ux,+ =

√
iσ

(b0)
y

⊗
b∈Nb0

\{Na∪{a}}
σ(b)
z , (17)

Ux,− =

√
−iσ(b0)

y

⊗
b∈Nb0

\{Na∪{a}}
σ(b)
z .

It is worthwhile to note that, although the choice of

the vertex b0 in the neighbourhood of a at step i) is

not unique, the post-measurement graph states are LU

equivalent for any choice of b0 [13].

In Fig. 1 we represent the effects of the three different Pauli

measurements on a graph state through the changes in the

corresponding associated graph.

III. FROM PHYSICAL TO ARTIFICIAL TOPOLOGY

In this section, we exploit the tools introduced in Sec. II

to show how the artificial QLAN topology can be engineered

from a communication perspective to overcome the limitations

of the physical QLAN topology.
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(a) (b) (c)

Fig. 2: Pictorial representation of a QLAN. The orchestrator node (shown in red) is connected to the client nodes via a physical

topology. After operations performed locally at the orchestrator, artificial topologies are built upon the physical one: artificial

bus topology, in the sub-figure (b) or artificial (enhanced) ring topology, in the sub-figure (c).

A. System Model

In many practical scenarios, the generation of multipartite

entanglement requires sophisticated and resource-intensive se-

tups, often involving complex experimental apparatuses and

precise control mechanisms.

This makes pragmatic to assume a specialized super-node,

referred to as orchestrator in the following, responsible for lo-

cally generating and then distributing a multipartite entangled

state – and, specifically, a graph state in our case – among

the network nodes [25]–[27]. To this aim, the orchestrator is

directly connected through physical quantum channels to each

of the network nodes, referred to as clients in the following

and whose number is assumed equal to k.

Remark. The assumption of a hierarchy among the nodes,
with the orchestrator responsible for distributing the multipar-
tite entanglement state to the client, is clearly realistic, given
the current maturity of the quantum technologies and given
the unavoidable requirement of some sort of local interaction
among the qubits to be entangled. Yet, it imposes a hard
constraint on the admissible physical QLAN topology, which
is compelled to be a star topology, as illustrated in Fig. 2.

Luckily – and differently from classical LANs – the physical

QLAN topology does not strictly and uniquely determines the

communication capabilities of the client nodes. And the reason

is that arbitrary on-demand artificial topologies can be built

upon the physical one, as shown in the next subsections by

exploiting peculiar properties of the graph states.

In this context, we can exploit different degrees of freedom

to engineer the artificial topology.

First, it must be acknowledged that a key role is played by i)
the number no of qubits of the n-qubit graph state retained by

the orchestrator, and ii) the number of qubits of the graph state

distributed at each client node. In the following, we consider

the worst-case scenario from a communication perspective: a

single entangled qubit distributed at each client. Accordingly,

n = no + k and the set of vertices of the graph G associated

to the graph state |G〉 can be denoted as

V = {o1, . . . ono , c1, . . . ck} (18)

with oi and cj denoting the vertices associated with the i-
th qubit at the orchestrator and the qubit at the j-th client,

respectively.

Remark. As an example of the key role played by these qubit
numbers, let us consider a n-qubit graph state with n = 1+k.
Under this assumption, we have that the number of qubits
at the orchestrator is forced to be no = 1, as depicted in
Fig. 2-(a). Hence, if we want to distribute a graph state whose
graph is reminiscent of the underlying physical topology –
namely, a star topology – we must have E =

{{o1, ci}ki=1

}
.

Being the considered graph state LU-equivalent to a GHZ state
[13], it allows only the (deterministic) extraction of a single
EPR pair between a pair of nodes (i.e., between a couple
of clients or between a client and the orchestrator). From
this simple example, it appears clear that different choices
about no imply different features of the resulting graph state
and hence of the associated graph, which in turn determine
the clients communication capabilities beyond the physical
topology constraint. This will be engineered in the next section.

Another key degree of freedom in the network design is

represented by the specific structure of the graph associated

to the corresponding graph state8. We restrict our attention

on two different designed structures of graph states, named in

the following as chain and diamond states, respectively. The

choice is not arbitrary, as detailed below.

Indeed, both the two considered structures can be obtained

starting from one of the simplest form of graph states –

namely, linear cluster states – that have been successfully

generated in controlled environments [19], [28]. Formally, a

linear cluster state is a particular type of graph state, which

can be expressed through a simplified expression of (8) as:

|C〉 =
n−1∏
i=1

CZ(i,i+1) |+〉⊗n
(19)

Furthermore, both the two graph states can be generated

by wisely (as detailed in the next subsections) distributing

8Each graph state |G〉 corresponds uniquely to a graph G. However, graph
states associated to different graphs might be equal up to some local unitary
(LU) operation [13], [14].
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Fig. 3: Pictorial representation of a chain graph state, obtained

by first generating at the orchestrator a linear cluster state, and

then by distributing the entangled qubits to the client so that

any qubit retained at the orchestrator is adjacent to two qubits

distributed at two different clients.

some qubits of a linear state to the clients, while retained

the remaining ones at the orchestrator. Finally, both the two

structures belong to the broader and widely investigated family

of two-colorable graph states. Graph states belong to this

family when the associated graph G = (V,E) is bipartite, i.e.,

vertices can be partitioned into two disjoint subsets so that no

pair of vertices within any of the two sets are connected by

an edge. Formally:

∃VA, VB ⊆ V :

VA ∪ VB = V ∧ VA ∩ VB = ∅
∧ ∀{a, b} ∈ E : a ∈ VA =⇒ b ∈ VB (20)

Two-colorable graph states have been widely investigated and

they exhibit useful properties [29]. Notable multipartite entan-

gled states – including Greenberger-Horne- Zeilinger (GHZ)

states, cluster states and Calderbank-Shor-Steane (CSS) states

are two-colorable graph states [14], [30]. It is worthwhile to

note that the assumption of having a two-colorable graph state

is not restrictive, since a graph is two-colorable if and only if

it does not contain any cycle of odd length [13].

B. From Physical Star Topology to Artificial Bus Topology

Definition 1 (Chain graph state). We define as “chain graph
state” a two-colorable graph state with n = 2k − 1 qubits,
whose associated graph G = (V,E) is so that:

V = VA ∪ VB withVA = {oi}k−1
i=1 ∧ VB = {ci}ki=1

E ⊂ [V ]2withE =
k−1⋃
i=1

{{oi, ci}, {oi, ci+1}
}
. (21)

We note that a chain graph can be easily obtained by

generating at the orchestrator a (2k − 1)-qubits linear cluster

state and by wisely distributing some qubits to the clients.

Specifically, the qubits to be retained and those to be dis-

tributed are interleaved within the linear cluster state, so that

Fig. 4: Generation of an artificial bus topology among the k
clients starting from a (2k−1)-qubit chain state. In particular,

the artificial topology is obtained by (wisely) measuring each

qubit retained at the orchestrator.

any qubit retained at the orchestrator is adjacent (within the

original linear topology) to two qubits distributed at two

different clients, as illustrated in Fig. 3.

Stemming from this entangled resource is possible to built

upon the physical topology an artificial bus topology among

the client nodes, by performing a number of Pauli σy mea-

surements equal to the number no = k − 1 of orchestration

vertices, as established by Lemma 1 and shown in Fig. 4.

Lemma 1. Given a chain graph state with a number of qubits
equal to n = 2k−1, with k denoting the number of clients, an
artificial bus topology among the k clients can be obtained by
performing k − 1 local σy-Pauli measurements on the qubits
retained at the orchestrator.

Proof: The proof follows straightforwardly by first ap-
plying local complementation of the graph G – associated
to the chain graph state – at vertices {oi}no

i=1 and then by
deleting these vertices from the resulting graph, as indicated
in (12) and (13). Thus, the artificial topology obtained from
the n-qubit graph state is expressed via the resulting graph
G̃

(no)
y = (Vy, Ey) with:

Vy = V \ VA = V \
k−1⋃
i=1

{oi} (22)

Ey =
{{ci, ci+1} : i = 1, . . . k − 1

}
(23)

Remark. It is worthwhile to note that the artificial bus
topology enables9 the simultaneous extraction of a number
of EPRs greater than 1, as established in [13]. Thus, this
artificial topology enables the possibility to fulfill up to �k2 �
different client communication needs in parallel (depending
on the identities of the clients aiming at communicate each
other), through for example the teleporting protocol.

9Clearly, whenever the number of clients is k > 2.
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Fig. 5: Generation of an artificial (enhanced) ring topology

among the k clients starting from a ( 32k − 1)-qubit diamond

state. In particular, the artificial topology is obtained by

(widely) measuring each qubit retained at the orchestrator.

C. From Physical Star Topology to Artificial (Enhanced) Ring
Topology

By working on the degrees of freedom introduced in

Sec. III-A, a different artificial topology can be built upon the

physical star topology. To this aim, we provide the following

definition.

Definition 2 (Diamond-like graph state). We define as
“diamond-like graph state” a two-colorable graph state with
n = 3

2k− 1 qubits, whose associated graph G = (V,E) is so
that:

V = VA ∪ VB withVA = {oi}
k
2−1
i=1 ∧ VB = {ci}ki=1 (24)

E ⊂ [V ]2 withE =

k
2−1⋃
i=1

{{oi, cj}, {oi, c k
2+j} : j = i, i+ 1

}
Stemming from this entangled resource is possible to built

upon the physical star topology an artificial topology among

the client nodes, which we refer to as “enhanced ring topol-

ogy” due to its particular shape, i.e., a ring topology with some

extra edges among the nodes. This is possible by performing

a number of Pauli σy-measurements equal to the number

no = k
2 − 1 of orchestration vertices, as established by

Lemma 2 and shown in Fig. 5.

Lemma 2. Given a diamond-like graph state with a number of
qubits equal to n = 3

2k−1, with k denoting an even number of

Fig. 6: Diamond-like graph state obtained by locally manip-

ulating at the orchestrator two chain graph states via fusion

operations.

clients, then an artificial enhanced ring topology among the k
clients can be obtained by performing no = k

2 − 1 local Pauli
σy-measurements on the qubits retained at the orchestrator.

Proof: The proof follows similarly to Lemma 1, by first
applying local complementations of the graph G – associated
to the diamond-like graph state – at vertices {oi}no

i=1 and then
by deleting these vertices from the resulting graph, as indi-
cated in (12) and (13). Thus, the artificial topology obtained
from the n-qubit diamond-like graph state is expressed via the
resulting graph G̃

(no)
y = (Vy, Ey) with:

Vy = V \ VA = V \
no⋃
i=1

{oi} (25)

Ey =
{
{ci, ci+1}, {c k

2+i, c k
2+i+1}, {ci, ck/2+i+1},

{ci+1, ck/2+i} : i = 1, . . .
k

2
− 1

}
∪

∪ {{ci, ck/2+i} : i = 1,
k

2

}
. (26)

We note that Lemma 2 holds for an arbitrary even value

of k, and that the number of additional edges among the

clients – with respect to the ring topology – is equal to

k − 2. We also observe that a diamond-like graph state

can be obtained by generating at the orchestrator two linear

cluster states and by performing suitable fusion operations

before the distribution, as represented in Fig. 6. Specifically,

after the fusion operations and according to Lemma 2, σy-

measurements on the orchestrator qubits lead to the artificial

(enhanced) ring topology.

Remark. It is evident that an artificial (enhanced) ring
topology, with number k of clients greater than 2, allows the
extraction of a number of EPR pairs greater than 1 differently
from artificial star topologies. Indeed with respect to artificial
bus topologies, the enhanced ring provides more degrees of
freedom in selecting the identities of the nodes sharing the
extracted EPR pairs. Thus, it seems an artificial topology
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Fig. 7: Pictorial representation of the sequence of Pauli mea-

surements: a) at the orchestrator, for obtaining an artificial

enhanced ring topology from a diamond-like graph state, and

ii) at the bridges, for eventually obtaining a ring topology.

suitable in contexts characterized by high-variability of the
client traffic demands.

Remark. It is worthwhile to note that the enhanced ring
topology can be converted into an artificial ring topology
by performing additional Pauli-measurements on the bridge
qubits, namely, on the client qubits that are adjacent to more
than one orchestrator qubit within the diamond-like graph
state. Specifically, as depicted in Fig. 7 for the case k = 6,
by performing a σy-measurement on one of the bridge qubit
– say qubit c2 – followed by a σz-measurement on the other
one – say qubit c5 – an artificial ring topology is created.

IV. CONCLUSIONS

In this paper, we have introduced the pivotal role played

by multipartite entanglement within Quantum Local Area

Network (QLAN) topology. Specifically, we have shown that

the engineering of the artificial network topology enabled by

multipartite entanglement can be performed on-demand, ac-

cording to the communication needs, by exploiting only local

Pauli measurements at the node responsible for multipartite en-

tanglement generation and distribution. To this aim, we proved

that it is possible, by starting from a physical star topology

and by wisely manipulating multipartite entanglement, to build

different artificial topologies, such as bus, enhanced ring and

ring. We hope that this work, by proposing a new perspective

on the concept of quantum LANs, will fuel the interest of the

community towards QLANs as building block for the future

Quantum Internet.
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