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Abstract—The Quantum Internet is envisioned, at its final
stage, to globally interconnect heterogeneous quantum networks.
And this interconnection relays on entangled states shared among
several quantum networks. In this paper, we take a step towards
the engineering of entanglement as a inter-network resource.
Specifically, we consider the interconnection of Quantum Local
Area Networks (QLANs), and we show how to dynamically
generate inter-QLAN artificial connectivity by means of local
operations only. To this aim, we first design the multipartite
entangled state to be distributed within each QLAN. Then,
we show how such a state can be engineered for obtaining
artificial links between different QLANs nodes. By leveraging the
properties of a particular class of multipartite entangled states,
namely, graph states, our results dynamically adapt the artificial
connectivity to the network traffic patterns. Our proposal is
preliminary towards scaling the interconnection of quantum
networks.

Index Terms—Entanglement, Quantum Networks, Quantum
Communications, Quantum Internet

I. INTRODUCTION

There is a common agreement on entanglement being the

key resource for the Quantum Internet [1]–[4]. Indeed, en-

tanglement enables a new form of connectivity among remote

nodes, even if they are not connected through a direct physical

quantum channel. For this reason, entangled states – such as

EPR pairs – enable artificial communication links among the

quantum network nodes. More into details, an artificial link

represents a virtual communication link – established between

two remote nodes that share some entanglement – which can

be exploited to perform communication tasks between the two

remote nodes.

In this context, entanglement distribution plays a crucial

role. Indeed, several strategies can be adopted. As instance,

one could distribute an EPR pair between any couple of

nodes, which results in an all-to-all connectivity. However,

this strategy is unfeasible for large networks, since it does

not scale. Alternatively, entanglement could be distributed

according to a strategy reminiscent of reactive classical net-

work routing. Specifically, EPR pairs could be distributed

along the path connecting the source and the destination,

whenever a communication request occurs. Then, with swap-

ping operations at the intermediate nodes, an artificial link
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between the source and the destination is eventually built,

by consuming EPR pairs along the path. Unfortunately, this

strategy presents majors drawbacks such as severe delays and

network overhead. Indeed, before serving a communication

request, several operations must be successfully concluded

including – but not limited to – entanglement generation,

distribution and swapping. Furthermore from a network en-

gineering perspective, it is important to highlight that the

identities of the nodes to be artificially linked must be decided

a-priori.

Thankfully, multipartite entanglement represents a powerful

resource allowing to decide on-demand, i.e. at run-time, the

identities of the nodes exploiting the communication resource.

For this reason, the connectivity enabled by such states is

referred to as on-demand connectivity [5]. To elaborate more,

a multipartite entangled state shared among a set of remote

nodes allows to dynamically extract one – or more – EPR

pair by only exploiting Local Operations and Classical Com-

munications (LOCC). This allows to dynamically select the

identities of the nodes exploiting the communication resource,

without any additional delay [4], [5].

Within the study of multipartite entangled states, some

notable works have been proposed. These concern the anal-

ysis of their quantum properties, such as their amount of

entanglement [6] and their so called pairability, namely, the

ability of extracting EPRs from a multipartite state [7]–[9].

Other notable works focused on sufficient conditions for a

multipartite entangled state to be defined as k-universal, which

represent a generalization of the aforementioned pairability

measurement [10]. Besides, in [11] the authors propose a

class of multipartite entangled state, namely, graph states, for

the implementation of an all-photonic quantum repeater for

quantum networks.

Despite the aforementioned remarkable works, multipartite

entangled states have been poorly investigated so far from

a network engineering perspective. On the contrary, in this

paper, we take a step towards the engineering of multipar-

tite entanglement as a communication resource for quantum

networks. To this aim, we consider the interconnection of

Quantum Local Area Networks (QLANs) and we engineer

a multipartite entangled state for inter-QLANs connectivity.

Then, stemming from the designed multipartite state, we show

how to build upon the physical topologies, through local

operation only, several artificial topologies ranging from the

fully connected topology to the star topology, each involving

different-QLANs nodes.

Hence, stemming on these results, we proactively adapt
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Quantum Channels:

Quantum Nodes:

QLAN physical channel

Inter-QLANs physical channel

Client nodeSuper-node

Fig. 1: Schematic representation of the considered quantum

network architecture. The network comprises several Quantum

Local Area Networks (QLANS). Within each QLAN, a super-

node generates and distributes resources – namely, multipartite

entangled states – to a set of quantum nodes – referred to as

clients – with a star-like topology. Inter-QLAN connectivity

is enabled by point-to-point quantum channels interconnecting

different super-nodes.

the artificial connectivity among different QLANs so that

the networks can easily adapt to different traffic patterns or

requirements. Notably, this represents a crucial ability required

for an effective quantum network design.

II. PRELIMINARIES

A. Graph States

Graph states can be effectively described with graph theory

tools. Specifically, stemming from an arbitrary graph G =
(V,E), the corresponding graph state – denoted with |G〉
– can be obtained by mapping each vertex of the graph G
with a qubit in the state |+〉, and by performing a controlled-

Z (CZ) gate between each pair of qubits corresponding to

adjacent vertices in G [12], [13]. Since the CZ operation

is an entangling operation, an edge corresponds to quantum

correlation shared between two qubits. As a consequence, the

distribution of a graph state among remote nodes of a quan-

tum network establishes an entanglement-based connectivity

between remote nodes.

Formally, the graph state |G〉 associated to graph G =
(V,E) is obtained as1:

|G〉 =
∏

(i,j)∈E

CZ(i,j) |+〉⊗n
(1)

1With a (widely-used) notation abuse in (1), since the application of the
CZ(i,j) gate on the state |+〉⊗n requires a reference to n − 2 identity
operations I acting on all the qubits different from i or j.

where |+〉 = |0〉+|1〉√
2

denotes the initial qubit state, n = |V |
and CZ(i,j) denotes the CZ gate applied to the qubits associ-

ated to the neighbour vertices i, j ∈ V .

Remarkably, although a graph state uniquely correspond to a

graph, there exist some equivalence classes among such states.

From a network engineering perspective, an equivalency class

of interest is represented by the so-called local unitary (LU)

equivalence, which constitutes a key metric for quantifying

and classifying entanglement [14]. As instance, the n-qubit

graph state |Sn〉 corresponding to the star graph Sn (formally

defined in Def. 3) and the n-qubit GHZ state [15], [16] are

LU-equivalent.

The mapping between graph states and graphs is of a

paramount importance, beyond the expression in (1). Specif-

ically, the action of fundamental operations – such as Pauli

measurements – on a graph state |G〉 can be described via

simple transformations on the associated graph G.

More into details, a projective measurement through one of

the Pauli operators – namely, σx, σy, or σz – on a qubit of

the graph state |G〉 yields to a new graph state
∣∣∣G̃

〉
on the

unmeasured qubits. As proved in [6], [12], this new graph

state
∣∣∣G̃

〉
can be obtained – up to local unitaries – by means

of simple transformations on the graph G associated to the

original graph state |G〉, such as vertex deletion and the

local complementation. Since projective measurements will be

exploited in Sec. III for engineering the artificial connectivity

enabled by entanglement, it is convenient to summarize in the

following their effects on an arbitrary graph state |G〉 [6], [12].

Pauli Measurements. The projective measurement via a Pauli
operator σi

ξ on the i-th qubit of the graph state |G〉 – namely,
on the qubit associated to vertex i in graph G – yields to a
new graph state

∣∣∣G̃
〉

among the remaining qubits, which is
LU-equivalent to the graph state |G′〉, associated to graph G′

obtained with vertex deletion and local complementations:

G′ ≡

⎧⎪⎨
⎪⎩
G− i if ξ = z

τi(G)− i if ξ = y

τk0

(
τi
(
τk0(G)

)− i
)

if ξ = x.

(2)

In (2), G − i denotes vertex i deletion and τi(·) denotes the
local complementation2 operation at vertex i, and k0 ∈ Ni

denotes an arbitrary neighbor of vertex i.

III. SYSTEM MODEL

A. Network Topology

We consider, as the archetype of the future Quantum Inter-

net, the network resulting from the interconnection of different

Quantum Local Area Networks (QLANs).

Entanglement generation is a complex hardware-demanding

task, that becomes even more challenging when it comes to

multipartite entanglement. For this, as commonly adopted in

literature [17]–[21], it is pragmatic to assume each QLAN

2The local complementation at vertex i consists in complementing the edges
among the nodes adjacent to i. In a nutshell, it requires to remove all the edges
that were previously connecting such nodes, and to add edges that were not
previously connecting such nodes. For more details please refer to [13].
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(c)

multipartite entangled state

Entanglement Resources

(a) (b)

EPR pair

Fig. 2: Pictorial representation of the multipartite entanglement distribution process within a single QLAN of Fig. 1. (a) The

super-node is responsible for entanglement generation and distribution within each QLAN. Accordingly, it locally generates the

multipartite entanglement state and distribute it via teleportation. For this, one additional EPR pair per client must be generated

at the super-node. (b) Once an EPR pair is shared between super-node and each client, one e-bit of the multipartite entangled

state can be teleported to the client by consuming such an EPR. (c) Eventually, the multipartite entangled state is distributed

to the clients so that all the QLAN nodes, including the super-node, are entangled.

organized in a star-like topology, as represented in Fig. 1, with

a set of clients connected to a specialized super-node, which

is responsible for entanglement generation and distribution.

Accordingly, multipartite entangled states are generated

locally at each super-node, and then distributed to the cor-

responding clients via teleportation process, as represented in

Fig. 2. The rationale for this strategy – namely, for distributing

multipartite entangled states via teleportation rather than via

direct transmission – lies in the higher robustness against

losses and in the higher tolerance to different persistence levels

exhibited by different classes of multipartite entangled states

[21]–[23].

While intra-QLAN topologies are pragmatically assumed

as star-like topologies for the reasons above, no constrains

are enforced to inter-QLAN connectivity, which is enabled by

point-to-point quantum links interconnecting different super-

nodes as shown in Fig. 1.

B. Problem Statement

Stemming from the network architecture introduced so far,

we can now formally define our problem, by focusing on

the toy-model constituted by two QLANs interconnected by a

single link between the corresponding super-nodes.

Problem. Given two QLANs, interconnected by a single
physical link between the corresponding super-nodes, the goal
is to design and engineer a multipartite entanglement state
distributed in each QLAN so that artificial links among nodes
belonging to different QLANs can be dynamically obtained
on-demand, by overcoming so the constraints induced by the
physical topology.

In essence, an artificial link represents a virtual communi-

cation link established between two remote nodes, since they

share some entanglement.

In EPR-based networks, artificial links between distant

nodes can be obtained by relying only on bipartite entangle-

ment and thus by performing swapping operations at interme-

diate nodes [4] so that an EPR pair between remote nodes

is eventually obtained. Yet, this strategy presents a drawback:

the identities of the nodes to be artificially linked must be

decided a-priori. In other words, for each EPR pair3 distributed

through the inter-QLAN link only one artificial link among

distant nodes can be obtained. This implies that artificial

links via entanglement swapping is reminiscent of reactive
classical routing strategies, where the source-destination path

is discovered when a packet is ready to be transmitted.

Conversely, in multipartite-based networks, multiple artifi-

cial links between distant nodes can be obtained by properly

choosing the initial multipartite state and by wisely manipu-

lating it via local operations – i.e., via free operations from

a quantum communication perspective. In such a way, we

can pro-actively generate and distribute entanglement among

subset of nodes of different QLANs so that the identities of the

nodes eventually communicating can be chosen dynamically

at run time. Clearly, this strategy is reminiscent of proactive
classical routing strategies, where source-destination paths are

discovered in advance, and they remain ready to be used

eventually, when the necessity of transmitting a packet arises.

As an example, let us consider two adjacent QLANs in

Fig. 1, by assuming – for the sake of exemplification –

a traffic pattern from super-node of the leftmost QLAN to

clients of the rightmost. An EPR shared between super-

node and any of the clients can be obviously extracted via

entanglement swapping. Yet, the identity of the client must

be decided a-priori. Conversely, we aim at generating an

artificial connectivity as the one represented in Fig. 4a, where

artificial links between super-node and each remote client

are proactively generated. This artificial connectivity will be

eventually manipulated – without the need of further quantum

communications – when a communication request will be

ready to be served by extracting the ultimate artificial link

interconnecting the effective source-destination pair.

3Hereafter, we obviously refer to maximally-entangled EPR pairs, neglect-
ing any noise affecting the EPR generation and distributing for the sake of
exposition simplicity.
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v̇2n1−1

v̇2i

v̇11

v̇21

v̇22

v̈11

v̈2n2−1

v̈2j

v̈21

Ṗ1 = {v̇11}
Ṗ2 = {v̇21, · · · , v̇2n1−1}

P̈1 = {v̈11}
P̈2 = {v̈21, · · · , v̈2n2−1}

(a) Each super-node generates and distributes, as described
in Fig. 2, a star graph state in each QLAN, denoted as∣∣∣Ṡn1

〉
= (Ṗ1, Ṗ2, Ė) and

∣∣∣S̈n1

〉
= (P̈1, P̈2, Ë), respectively.

Furthermore, an EPR is generated and shared between the two
super-nodes.

v̇2n1−1

v̇2i

v̇11

v̇21

v̇22

v̈11

v̈2n2−1

v̈2j

v̈21

P1 = {v̇11, v̈21, · · · , v̈2n2−1}
P2 = {v̈11, v̇21, · · · , v̇2n1−1}

(b) By exploiting the EPR shared between the two QLANS for
performing a remote CZ, a new graph state shared among all
the nodes of the two QLANs is obtained. Remarkably, also this
new graph state is a two-colorable graph state, and specifically
it is a binary star graph |Sn1,n2〉.

Fig. 3: Interconnecting two QLANs through a binary graph state |Sn1,n2〉 distributed among all the nodes, obtained from two

star graphs distributed in each QLAN and an additional EPR pair.

IV. INTER-QLANS ARTIFICIAL CONNECTIVITY

A. Engineering Multipartite Entanglement

We aim at engineering the entanglement-based artificial

topology for creating artificial links among network remote

nodes belonging to different QLANs. To this aim, the choice

of the initial multipartite entangled state distributed in each

QLAN is of paramount importance.

As discussed in Sec. II-A, we focus our attention on graph

states due to the useful mapping between operations on a

graph state |G〉 and transformations of the associated graph

G. Yet, graph states represents a wide class of multipartite

entangled states. In the following, we design and manipulate a

specific instance of graph states that allows us to addresses our

problem: dynamically enabling multiple artificial links among

distant nodes. Before formally introducing this specific graph

state in Def. 4, the following preliminaries are needed.

Definition 1 (Two-colorable Graph or Bipartite Graph). A

graph G = (V,E) is two-colorable if the set of vertices V can

be partitioned4 into two subsets {P1, P2} so that there exist

no edge in E between two vertices belonging to the same

subset. Two-colorable graph G = (V,E) can be also denotes

as G = (P1, P2, E).

We focus our attention on two-colorable graph states with-

out loss of generality, since any graph state can be converted

in a two-colorable one under relaxed conditions [6]. Indeed,

any graph is two-colorable iff it does not contain cycles of

odd length. Furthermore, two-colorable graphs model a wide

range of different network topologies, including bus, ring and

star [13]. In the following, for the sake of notation simplicity,

we label the vertices in P1 and P2 as follows:

P1 = {v11 , · · · , v1n1
} ∧ P2 = {v21 , · · · , v2n2

} (3)

with n1 + n2 = n.

4A partition of a set is a grouping of its elements into non-empty subsets,
in such a way that every element is included in exactly one subset.

Definition 2 (Complete Bipartite Graph). Let G =
(P1, P2, E) be a bipartite graph with |P1| = n1 and |P2| = n2.

If E = P1 × P2, i.e., if

∀ v1i ∈ P1 ∧ v2j ∈ P2, ∃ (v1i , v2j ) ∈ E, (4)

G is defined as complete bipartite graph and denoted as

Kn1,n2 .

Hence, in a complete bipartite graph, any vertex belonging

to one part is connected to every vertex belonging to the

complementary part by one edge.

Definition 3 (Star Graph). Let Kn1,n2 be a complete bipartite

graph. If n1 (or equivalently n2) is equal to 1, then the graph

is called star graph and denoted equivalently as either K1,n−1

or Sn, where n− 1 is the cardinality of the other part. In the

following, we define vertex v11 as the center of the star graph.

QLAN Entanglement Resource. The star graph state |Sn〉
represents the multipartite entangled state generated and
distributed in each QLAN, with each qubit of state |Sn〉
distributed to a different node. Specifically, by following
labelling (3), qubit corresponding to vertex v11 is stored
at the super-node, whereas qubits corresponding to vertices
{v21 , . . . , v2n−1} are distributed to the clients.

Such a state corresponds to a graph that perfectly matches

with the QLAN physical topology and it is easy to generate

[18], [20], [24]. It is worthwhile to mention that it represents

the worst-case scenario, since from a star graph it is possible

to extract only one EPR pair, thus limiting the communication

dynamics within the single QLAN. Despite this, in the next

sections we will prove that by properly manipulating the

multipartite states in the different QLANs, the limitations of

the physical topologies can be overcome. Stemming from the

concept of star graph Sn−1, we are ready now to introduce a

two-colorable graph state that will be extensively used in the

following, namely, the binary star graph state |Sn1,n2〉.
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v̇11

v̇21

v̇22

v̇2n1−1

v̈11

v̈21

v̈2i

v̈2n2−1

(a) Hierarchical peer-to-peer artificial topology discussed in
Prop. 2: an artificial fully-connected topology among all the
clients of the same QLAN and one super-node of a different
QLAN.

v̇11

v̇21

v̇22

v̇2n1−1

v̈11

v̈21

v̈2i

v̈2n2−1

(b) Clients hand-over artificial topology discussed in Cor. 1: an
artificial star topology among the same set of nodes of Fig. 4a,
but centered at a super-node of a different QLAN.

Fig. 4: Different artificial inter-QLAN topologies matching with a traffic pattern involving the super-node of one QLAN and

clients of the other QLAN. Remarkably, all the artificial inter-QLAN topologies are obtained by manipulating a binary star

graph state with local operations and measurements only.

Definition 4 (Binary Star Graph). A binary star graph Sn1,n2

is a bipartite graph G = (P1, P2, E) with the edge set E
defined as:

E = {v11} × P2 ∪ P1 × {v21} (5)

with P1 and P2 given in (3).

From (5), it results that only one vertex in each part of a

binary star graph – v11 ∈ P1 and v21 ∈ P2 – is fully connected.

In Sec. IV-B, we will show that – by locally manipulating at

some specific network nodes a binary star state |Sn1,n2〉 shared

between the two QLANs, artificial links among remote nodes

are dynamically generated. Yet, before operating on such a

state, the state must be distributed among all the nodes. Hence,

one preliminary question naturally arises: how expensive is it
– from a quantum communication perspective – to distribute
such a state within the two QLANs? Or, in other words, how

many EPR pairs must be consumed for distributing such a

state? One might believe that the required number of EPR pairs

should somehow depend on the number of artificial links that

must be generated among remote nodes belonging to different

QLANs.

We answer to this question with the following proposition.

Proposition 1. Let’s assume that a star state
∣∣∣Ṡn1

〉
has been

distributed in the first QLAN and that another star state
∣∣∣S̈n2

〉
has been distributed in the second QLAN. Then, a binary
star state |Sn1,n2〉 can be distributed among all the nodes
by consuming only one EPR pair at the two super-nodes.

Proof: Please refer to App. A

In Fig. 3 we represents the binary star state building

process, by also labelling each network node with the (vertex

corresponding to the) stored qubit. Thus, we can now to define

our global entanglement resource.

Inter-QLAN Entanglement Resource. The binary star state
|Sn1,n2〉 represents the inter-QLAN multipartite entangled
resource, which is locally manipulated at network nodes for

dynamically enabling multiple artificial links among remote
nodes.

B. On-Demand Artificial Links

Here, we show that multiple artificial links can be dynam-

ically obtained among remote nodes belonging to different

QLANs, by means of local operations only. Specifically,

the set of employed operations limits to single qubit gates,

single qubit Pauli measurements and classical communica-

tions, which all represent free operations from a quantum

communication perspective.

To this aim, we consider two different archetypes of traffic

patterns, super-node to clients and client to clients. For each

type, we discuss different artificial topologies that satisfy the

communication demand.

Proposition 2 (Hierarchical Peer-to-Peer). A binary star
graph state |Sn1,n2〉 shared between n = n1 + n2 nodes
belonging to two different QLANs allows to obtain a ni-
complete graph state |Kni〉 (with i = 1, 2) connecting the
super-node of a QLAN and all the (ni−1)-clients of the other
QLAN.

Proof: Please refer to App. B

The result of Prop. 2 is particularly relevant from a com-

munication perspective. Specifically, the fully connected graph

represented in Fig. 4a corresponds to a GHZ state. As already

acknowledged, GHZ state allow to extract one EPR pair

between any couple of nodes sharing it [21]. As a conse-

quence, they exhibit a remarkable flexibility on the choice

of the identities of the nodes exploiting the communication

link. Notably, the completely connected graph includes the

other QLAN super-node. Hence, from a topological perspec-

tive, the involved clients and super-node act as peer-to-peer

entities, which can exploit the shared entangled state either

to accommodate intra-QLAN traffic requests or inter-QLAN

traffic requests. This consideration induced us to label this

proposition as “hierarchical peer-to-peer” artificial topology,

by including the differentiation – aka hierarchy – in terms of

1984

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on January 16,2025 at 08:25:04 UTC from IEEE Xplore.  Restrictions apply. 



hardware requirements between clients and super-node. The

hierarchical peer-to-peer artificial topology is particularly ad-

vantageous whenever no information is available on the actual

network traffic features of the QLAN clients. Specifically, if a

client may equally need to communicate with clients belonging

to the same QLANs or with clients belonging to a different

QLAN, then the communication request will be ready to be

served by proactively manipulating the “hierarchical peer-to-

peer” artificial topology. And, remarkably, the communication

request is easily served by simply performing local unitaries

and measurements, without any additional quantum commu-

nication.

From Prop. 2, the following corollary follows.

Corollary 1 (Client Hand-Over). A binary star graph state
|Sn1,n2〉 shared between n = n1+n2 nodes belonging to two
different QLANs allows to obtain a ni-nodes star graph state
|Sni〉 (with i = 1, 2), centered at one QLAN super-node and
connecting all the (ni − 1)-clients of the other QLAN.

Proof: The proof follows by adopting similar reasoning
as in Prop. 2 and by replacing the Pauli-y measurement at the
super-node with a Pauli-x measurement.

We note that Cor. 1 creates artificial links between the super-

node of one QLAN and the clients of the other QLAN. This,

from a topological perspective, is equivalent to virtually move
the clients of a QLAN into a different QLAN, resembling thus

a sort of client hand-over from one QLAN to the other.

The artificial topologies represented in Fig. 4 are obtained

by leveraging suitable sequences of Pauli measurements,

which, thus, represent a tool for engineering the artificial con-

nectivity. To elaborate more, the graph represented in Fig. 4a

leverages a sequence of Pauli-z and Pauli-y measurements.

Remarkably, by replacing the Pauli-y measurement at the

super-node with a Pauli-x measurement, we obtain the LU-

equivalent graph state corresponding to the clients hand-over

topology, as shown in Fig. 4b.

The following Prop. 3 and the subsequent Cor. 2 prove

that artificial topologies involving only clients belonging to

different QLANs can be built by properly manipulating the

binary star graph state.

Proposition 3 (Pure Peer-to-Peer). A binary star graph state
|Sn1,n2

〉 shared between n = n1+n2 nodes belonging to two
different QLANs, allows to obtain a ni-complete connected
graph state |Kni〉 (with i = 1, 2) shared between one client
node of a QLAN and all the (ni−1)-clients of the other QLAN.

Proof: Please refer to App. C

As showed in Fig. 5a, Prop. 3 allows an arbitrary client

belonging to a QLAN to share an artificial link with any client

belonging to a different QLAN. Hence, it generates an artificial

QLAN topology among peer client entities – thus, the naming

“pure” – by neighbouring remote nodes, despite the original

constraints imposed by the physical topologies.

A pure peer-to-peer artificial topology extends the flexibility

on the choice of the identities of the nodes exploiting the

ultimate artificial link, by involving only clients at different

QLANs. This could be particularly advantageous for designing

distributed network functionalities relying on clients commu-

nication capabilities. Indeed, if a client needs to communicate

with a client belonging to a different QLAN, then – by proac-

tively manipulating the artificial topology – the communication

request is ready to be served, without further orchestration at

the super-node. Indeed, the communication request is fulfilled

by performing local unitaries without any additional quantum

communications. And, actually, the client of the other QLAN

can be selected by properly manipulating the initial binary star

graph. Hence their identities can be engineered on-demand.

Corollary 2 (Role Delegation). Starting from a binary star
graph state |Sn1,n2〉 shared between n = n1 + n2 nodes
belonging to two different QLANs, a ni-star graph state
|Sni〉 (with i = 1, 2) centered at one QLAN client node and
connecting all the remaining (ni−2)-clients of the same QLAN
and a client node of the other QLAN can be obtained.

Proof: The proof follows by adopting similar reasoning
as in Prop. 3 and by replacing the Pauli-y measurement with
a Pauli-x measurement.

Due to the particular structure of this artificial topology

shown in Fig. 5b – which has one client as center of the star

graph instead of the super-node – we are induced to label this

topology as “role delegation topology”.

V. DISCUSSION AND CONCLUSIONS

We now provide the reader with an overall view of the

derived result from a network perspective. As discussed, Pauli

measurements – with the assistance of local unitaries and

classical communications – represent an effective and powerful

engineering tool able to radically change the network topology.

Specifically, the action of measuring a qubit stored at an arbi-

trary nodes results in disconnecting such a node from the final

virtual topology. This action is evident, as instance, in Fig. 4a,

where Pauli-z measurements are performed at the clients of

the leftmost QLAN. However, a different Pauli measurement

– say x or y – doesn’t limit to disconnect the measured

node, but it changes the artificial topology by either creating

additional edges among nodes previously disconnected or

removing edges already present. And these changes are not

limited to neighbor nodes, but they involve remote nodes as

well. Accordingly, the effect of Pauli measurements allows to

generate an entangled-based topology interconnecting clients

and/or super-nodes belonging to different physical QLANS,

without any further use of quantum links. This is equivalent

to neighbour remote nodes, by exploiting the entanglement

features [5]. In conclusion, by engineering the sequence and

type of Pauli measurements to be performed, we exploit the

potentialities of multipartite entanglement in “shaping” the

artificial connectivity, as well as the freedom in the choice

of the identities of the involved nodes.
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APPENDIX A

PROOF OF PROPOSITION 1

Let us label the vertices of the graphs Ṡn1
= (Ṗ1, Ṗ2, Ė)

and S̈n2 = (P̈1, P̈2, Ë), associated to the graph states
∣∣∣Ṡn1

〉

and
∣∣∣S̈n2

〉
as:

Ṗ1 = {v̇11} ∧ Ṗ2 = {v̇21 , · · · , v̇2n1−1}, (6)

P̈1 = {v̈11} ∧ P̈2 = {v̈21 , · · · , v̈2n2−1}, (7)

with Ė = Ṗ1 × Ṗ2 and Ë = P̈1 × P̈2. Accordingly and

as shown in Fig. 6-a, the qubits of graph state
∣∣∣Ṡn1

〉
are

distributed among the nodes of the first QLAN, with the super-

node storing the qubit associated to vertex v̇11 and the clients

storing the qubits associated to v̇21 , . . . , v̇
2
n1−1. Similarly, the

qubits of the graph state
∣∣∣S̈n2

〉
are distributed among the

nodes of the second QLAN, with the super-node storing the

qubit associated to the vertex v̈11 and the clients storing the

qubits associated to v̈21 , . . . , v̈
2
n1−1. By consuming an EPR pair,

the two super-nodes can perform a CZ operation between the

two qubits at their sides, which corresponds to adding edge

(v̇11 , v̈
1
1), as shown in Fig. 6-b. Hence, this additional edge

connects the (only) vertex in Ṗ1 with the (only) vertex in P̈2:

E = Ė ∪ Ë ∪ {(v̇11 , v̈11)}. (8)

If we want to color the overall graph, then these two vertex

sets must be colored with two different colors, say orange

and cyan. However, no edges connect the vertex in Ṗ1 with

vertices in P̈2, and hence all these vertices can be colored with

the same color, orange. Similarly, no edges connect vertex in

P̈1 with the vertices in Ṗ2, hence all these vertices can be

colored with the same color. It follows that the overall graph

G is a two-colorable graph with parts P1 and P2 given by:

P1 = Ṗ1 ∪ P̈2 = {v̇11 , v̈21 , · · · , v̈2n2−1} (9)

P2 = P̈1 ∪ Ṗ2 = {v̈11 , v̇21 , · · · , v̇2n1−1} (10)
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P2 = {v̈11, v̇21, · · · , v̇2n2−1}

Ṗ1 = {v̇11}
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P̈1 = {v̈11}
P̈2 = {v̈21, · · · , v̈2n2−1}

(a) (b) (c)

Fig. 6: Generation of a binary star state starting from two star states distributed in each QLAN, with physical topology

(quantum links) omitted for the sake of simplicity. (a) Initial scenario where three entangled resources are shared: i) star state

Ṡn1 among QLAN1 nodes, ii) star state S̈n2 among QLAN2 nodes, and iii) an EPR pair between the two super-nodes v̇11
and v̈11). (b) By consuming the EPR shared between the two super-nodes, a remote CZ operation is performed. This results

in the generation of the additional edge (v̇11 , v̈
1
1), represented by the purple wavy line. (c) By re-coloring the overall graph, it

becomes evident that it is a two-colorable graph corresponding to the binary star Sn1,n2 .

and with edge-set E in (8). The proof follows by acknowl-

edging that (8) coincides with (5).

APPENDIX B

PROOF OF PROPOSITION 2

Let us adopt Fig. 3 labeling and let us suppose that the

state |Kni〉 to be obtained must interconnect the clients of

the right-most QLAN, which implies ni = n2. Accordingly,

the final state must be the complete graph state |Kn2〉, which

corresponds to the complete graph Kn2 = (P1, P
2
1 ), with P1

defined in (9). The proof follows by performing: i) (n1 − 1)-
Pauli-z measurements on the qubits stored at the clients of

QLAN-1, and ii) a Pauli-y measurement on the qubit stored

at the super-node of the second QLAN. From (2), the action

of (n1 − 1)-Pauli-z measurements is equivalent to remove all

the client vertices in P2 in (10), which yields to the graph:

Sn1,n2 −P2 \ {v̈11} =
(
P1 ∪{v̈11}, P1 ×{v̈11}

)
= S′

n2+1 (11)

We observe that the graph S′
n2+1 in (11) corresponds to

a star graph connecting the vertices in the set P1 ∪ {v̈11},

with the super-node v̈11 being the center of the star. Then,

a Pauli-y measurement is performed on the qubit stored at

super-node of second QLAN and associated to the vertex

v̈11 . From (2), the action of this measurement is equivalent

to the local complementation of the graph S′
n2+1 at vertex

v̈11 , followed by the deletion of v̈11 from the graph, i.e.,

τv̈1
1

(
S′
n2+1

) − v̈11 . Step-by-step, we first perform the local

complementation τv̈1
1

(
S′
n2+1

)
, which yields to the graph:

τv̈1
1

(
S′
n2+1

)
=

(
P1 ∪ {v̈11}, (P1 ∪ {v̈11})2

)
. (12)

This is equivalent to add to the edge-set of the star graph

S′
n2+1 all the possible edges having both endpoints in the

subset P1. As a result, we obtain the complete graph con-

necting the set P1 ∪ {v̈11}. We then proceed by removing the

super-node v̈11 , and the proof follows.

APPENDIX C

PROOF OF PROPOSITION 3

Similarly to the previous proof, we adopt Fig. 3 labeling

and suppose that the state to be obtained is shared among all

the clients of the right-most QLAN. Accordingly, the final

complete graph state is |Kn2〉 corresponding to complete

graph Kn2 =
({v̇2j } ∪ P̈2, ({v̇2j } ∪ P̈2)

2
)

with P̈2 defined

in (7). The proof follows by performing: i) (n1 − 2)-Pauli-z
measurements on the qubits stored at the clients of the left-

most QLAN, with the exception of the client v̇2j , ii) a Pauli-y
measurement at the super-node of the first QLAN, and iii) a

Pauli-y measurement at the super-node of the second QLAN.

From (2), by performing (n1 − 2) Pauli-z measurements on

the clients is equivalent to remove all the clients in Ṗ2 in (10),

except for the client node v̇2j . Thus the resulting graph is:

Sn1,n2
− (

Ṗ2 \ {v̇2j }
)
=

=
(
P1 ∪ {v̇2j , v̈11}︸ ︷︷ ︸

V ′

, {v̈11} × P1 ∪ {(v̇2j , v̇11)}︸ ︷︷ ︸
E′

) �
= G′ (13)

Then, a Pauli-y measurement is performed on at vertex v̇11 at

super-node of the first QLAN. This yields to the graph:

τv̇1
1
(G′)− v̇11 =

(
P̈2 ∪ {v̈11 , v̇2j }, {v̈11} × (P̈2 ∪ {v̇2j })

)
= S′′

n2+1.

(14)

(14) corresponds to a star graph connecting the set P̈2 ∪
{v̈11 , v̇2j } with super-node v̈11 being the center of the star. Then,

a Pauli-y measurement is performed on the qubit v̈11 stored

at super-node of second QLAN. From (2), this is equiva-

lent to perform the following sequence of graph operations

τv̈1
1

(
S′′
n2+1

) − v̈11 . Step-by-step, the local complementation

yields to the graph:

τv̈1
1

(
S′′
n2+1

)
=
(
P̈2 ∪ {v̇2j , v̈11}, (P̈2 ∪ {v̇2j , v̈11})2

)
(15)

This equals to adding to the edge-set of the star graph S′′
n2+1

all the possible edges among the subset P̈2 with node {v̇2j }.
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As a result, we obtain the complete graph connecting the set

P̈2 ∪ {v̈11 , v̇2j }, namely, the client nodes of the second QLAN,

one client node {v̇2j } and the super-node of the first QLAN.

Then, by removing the super-node v̈11 , the proof follows.
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